Conditional Probability

for dependent events

formula for conditional probability:

$$P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)}$$
 "Probability of B given A"

Write the formula for the "Probability of A given B".

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

You are given two boxes with balls numbered 1-5. One contains balls 1,2,3 and the other contains 2,4. You first pick a box at random, and then you select a ball at random. What is the probability of picking a 2?

Picking a 5? $\frac{1}{2}$.

$$P(B \mid A) = \frac{.2}{.3} = \frac{2}{3}$$

$$P(A \mid B) = \frac{.2}{.5} = \frac{2}{5}$$

What is the probability that the sum of two die will be greater than 8, given that the first die is 6?

$$\frac{4}{6} = \frac{2}{3}$$

events A and B are independent if and only if they satisfy

$$P(B \mid A) = P(B)$$
 Or $P(A \mid B) = P(A)$

6) A coin is tossed and a single 6-sided die is rolled. Find the probability of landing on the head side of the coin and rolling a 3 on the die.

$$\frac{P(A \cap B)}{P(A)} = \frac{2}{3}$$

Kev

$$\frac{P(A \cap B)}{P(B)} = 7$$

Are the two events independent or dependent?

How do you know?

$$\frac{1}{12}\frac{1}{12} = \frac{1}{12}$$

P(3)=1/6
7

ixoy.			+
Male = M	Female = F		41
Blue = B	Not Blue =	N	Ma
			IVIa
Sample size $= 2$	00		
D(D) - 84			Fem
$P(B) = \frac{61}{200}$			
PCBIME)			Tot
$P(M) = \frac{64}{}$			100
$P(M) = \frac{01}{200}$			
r(Male)			
10			

1 (1 late)			
P(F B) = P(Female	$=\frac{48}{84}$ Blue		
P(B F) =	= (48	
P(Blue F	(cmale)		-
$P(M \cap E)$	3) =	136	
P(Males	{ Blue) =	<u> 36</u>	
$P(M \cup E)$	3) =	500	1/2
P(Male	or Blu	ع) =	20

Male or Blue) = 200
Male Male 84 Not Blue 85 28 36 Female 48 Not Blue 36

+		Blue	Not Blue	Total
	Male	36	28	64
	Female	48	88	136
	Total	84	6	206

Is color preference independent of gender?

P(A) = Male
P(B) = Blue
How do you know?

P(A|B) = P(A)

