Bell Work

Multiply

$$(x + 4)^2$$

$$(x - 7)^2$$

$$f(x) = 2 \cos \frac{1}{4}(x-\pi) \operatorname{Right} \Pi$$

$$f(x) = 4 \sin \frac{1}{2}(x+\pi)$$

$$f(x) = 2 \sin \left(\frac{1}{4} - \pi\right) \operatorname{Right} \Psi \Pi$$

$$f(x) = 4 \cos 2(x+\pi)$$

8)
$$tan\theta = -1$$
 $T \le \theta \le 2T$
 $tan\theta = 4 = sin\theta = 0pp$
 $tan\theta = 4 = sin\theta = 0pp$
 $tan\theta = 4 = sin\theta = 0pp$

radius

A **circle** is the set of all points in a plane that are equidistant from a given point called the **center** of the circle. A circle with center P is called "circle P" and can be written $\bigcirc P$. A segment whose endpoints are the center and any point on the circle is a **radius**. A **chord** is a segment whose endpoints are on a circle. A **diameter** is a chord that contains the center of the circle.

A **secant** is a line that intersects a circle in two points. A **tangent** is a line in the plane of a circle that intersects the circle in exactly one point, the **point of tangency**.

chord

center

diameter

Tell whether the line, ray, segment is best described as a *radius, chord, diameter, secant*, or *tangent* of \bigcirc B.

Coplanar circles can intersect in two points, one point or no points.

COMMON TANGENTS: A line, ray, or segment that is tangent to two coplanar circles is called a common tangent.

Tell how many common tangents the circles have and draw them.

a.

b.

C.

Tangent lines are \perp to the diameter of a circle at the point of tangency.

Line m is tangent to $\bigcirc Q$ if and only if $m \perp \overline{QP}$.

 \overline{AC} is tangent to \odot B.

Find AB.

$$x^{2} = 7^{2} + 24^{2}$$

 $\overline{\mathsf{ST}}$ is tangent to $\odot \mathsf{R}$.

Find the value of x.

 $\overline{\mathsf{ST}}$ is tangent to $\odot \mathsf{R}$.

Find ST.

LM is tangent to $\bigcirc N$. Find the radius of $\bigcirc N$.

$$\tan 24^{\circ} = \frac{\chi}{16}$$

 $16 + \tan 24^{\circ} = \chi$
 $\chi = 7.12$

Tangent segments from a common external point are congruent.

Find the value of x.

 $\overline{\text{ML}}$ and $\overline{\text{NL}}$ are tangent to $\odot P$.

Find the perimeter of ABCD. = 50

