2.1-2.4 Test Review

Find the vertex.

1. $f(x)$	$x(x) = -2x^2 + 12x - 18$	2.	$f(x) = -2(4x - 12)^2 + 5$
3. f(x)	$x(x) = x^2 + 16x + 61$	4.	$f(x) = \frac{1}{2}(5x + 10)^2$

Write the quadratic equation with the given vertex which passes through the given point.

	1 9	1 8 8 1
5.	Vertex: (-2,5); Point: (0,9)	6. Vertex: (-3, -10); Point: (0,8)
7.	Vertex: (1, -2); Point: (-1, 14)	8. Vertex: (2,3); Point: (0,2)

Find the x – intercepts.

$9. f(x) = 21x^2 + 29x - 10$	10. $f(x) = -x^2 + 2x + 5$
11. $f(x) = 8x^2 + 34x - 9$	12. $f(x) = x^2 + 10x + 14$

- 13. Determine the left-hand and right-hand end behavior of : $f(x) = x^5 + 3000000000x^2 + 10$
- 14. Determine the end behavior of $f(x) = -3x^{4000} 6x^2 + 4$
- 15. What is the multiplicity of the zero x = 5 in the function $f(x) = x^3(x-5)^4(x-2)^2$
- 16. State the degree of the given polynomial. $f(x) = -3x^2(x-2)^3(x+4)(x-1)^4$
- 17. State the maximum number of zeros for the polynomial $f(x) = -3x^6 + x^4 2x + 10$
- 18. State the maximum number of turning points for the polynomial $f(x) = 8x^5 + 3x^4 6x^2$

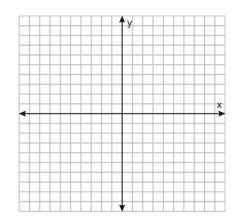
- 19. When using synthetic division the remainders from using -2 and 5 as inputs are 1 and -8respectively. Which of the following would be the best choice to use as input in order to find the zeros of the function?
 - a. -6
- b. 3
- c. 6
- d. -10
- e. None of these
- The following table shows there are at least how many real zeros? 20.

x	f(x)
2.1	0006
2.2	.00059
2.3	.00073
2.4	0007
2.5	0017
2.6	.00194
2.7	.01702

21. Which of the following are true given the following synthetic division?

I.
$$f(3) = 0$$

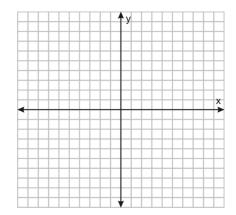
- I. f(3) = 0 II. x-int: (-3,0) III. x+3 is a factor


-3	3	2	-10	33
		-9	21	-33
	3	-7	11	0

22. If the polynomial $g(x) = (x + 4)^2(x - 3)(x + 1)$ is divided by the polynomial f(x) = x - 7, then what is the degree of the quotient?

23. Given: $10 - 2i$ Name its complex conjugate.	24. Simplify: $(3\sqrt{-4})^2$
25. Simplify: $-4(2+6i) - (2+11i)$	26. Write the expression in the form $a + bi$ $\frac{2 + 3i}{6i}$
27. Write the expression in the form $a + bi$ $\frac{5-2i}{i}$	28. Write the expression in the form $a + bi$ $\frac{1+3i}{3-6i}$
29. Write the expression in the form $a + bi$ $\frac{6-i}{3-i}$	30. Simplify: $-5(2+i)^2$

Graph the following quadratic. (show at least 7 points)


31.
$$y = -(2x - 8)^2 + 5$$

Vertex:_____

Axis of symmetry:_____

32.
$$y = \left[\frac{1}{2}(x-1)\right]^2 - 4$$

Vertex:_____

Axis of symmetry:_____

Write the polynomial with the given zeros.

33.
$$x = 1, -2, 5$$

$$34. \quad x = -2, -4, 2, 4$$

35. Divide: $(6x^4 + 30x^3 + 26x^2 - 2x - 90) \div (2x^2 + 4x + 6)$

36. Show that (x + 2) and (x - 3) are factors of:

 $f(x) = x^4 - 4x^3 - 7x^2 + 22x + 24$, then find the remaining zeros by using synthetic division.

37. Show that (x + 1) and (x - 1) are factors of:

 $f(x) = x^4 + x^3 + x^2 - x - 2$, then find the remaining zeros by using synthetic division.