- Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.
- Find rational zeros of polynomial functions.
- Find zeros of polynomials by factoring.

The Fundamental Theorem of Algebra

If f(x) is a polynomial of degree n, where n > 0, then f has at least one zero in the complex number system.

Linear Factorization TheoremIf f(x) is a polynomial of degree n, where n > 0, then f has precisely n linear factors $f(x) = a_n(x - c_1)(x - c_2) \cdot \cdot \cdot (x - c_n)$ where c_1, c_2, \ldots, c_n are complex numbers.

$$f(x) = a_n(x - c_1)(x - c_2) \cdot \cdot \cdot (x - c_n)$$

Note that the Fundamental Theorem of Algebra and the Linear Factorization Theorem tell you only that the zeros or factors of a polynomial exist, not how to find them.

How many zeros and what are they?

$$f(x) = x' - 2$$
 $0 = X - 2$
Zero. 1 $X = 2$

$$f(x) = x^{0} - 6x + 9$$
 $(x - 3)(x - 3) = 0$
 $x = 3$ multiplicity 2

$$f(x) = x^{0}-1$$
 $x^{4}-1=0$
Zeros: 4 $(x^{2}+1)(x^{2}-1)=0$
 $(x+i)(x-i)(x+1)(x-1)=0$
 $y=\pm i \quad x=\pm 1$

The Rational Zero Test

If the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ has integer coefficients, every rational zero of f has the form

Rational zero =
$$\frac{p}{q}$$

where p and q have no common factors other than 1, and

p = a factor of the constant term a_0

q = a factor of the leading coefficient a_n .

Find the rational zeros. $\pm \frac{1}{1}$ $f(x) = k^3 + x + 1$ ± 1 $\frac{1}{1} = \frac{1}{2} = \frac{2}{3}$ upper bound

Find the rational zeros of
$$f(x) = x^4 - x^3 + x^2 - 3x - 6$$

Rational: $X = -1, 2$
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -2
 -3
 -6
 -6
 -6
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7

X=tivs

$$\pm \frac{1,2,3,6}{1}$$
 $\pm 1, \pm 2, \pm 3, \pm 6$

Find all of the real zeros.

Helpful hints:

- 1) rational zero test: p/q
- 2) intermediate value theorem: (change in signs of the remainder)
- 3) upper and lower bound
- 4) use graphing calculator

Upper and Lower Bound Rules

Let f(x) be a polynomial with real coefficients and a positive leading coefficient. Suppose f(x) is divided by x - c, using synthetic division.

- 1. If c > 0 and each number in the last row is either positive or zero, c is an **upper bound** for the real zeros of f.
- 2. If c < 0 and the numbers in the last row are alternately positive and negative (zero entries count as positive or negative), c is a **lower bound** for the real zeros of f.

Prove that all of the real zeros lie between the interval [0, 1]

Find the real zeros:

$$\chi = -3, 1, \frac{1}{2}$$
 $f(x) = 2x^3 + 3x^2 - 8x + 3$

$$\frac{p}{q} = \frac{1}{1} \cdot \frac{1}{3} = \frac{1}{2} \left\{ 1, 3, \frac{1}{2}, \frac{3}{2} \right\}$$

$$\frac{1}{2} \begin{vmatrix} 2 & 3 & -8 & 3 \\ 1 & 2 & -3 \\ 2 & 4 & -6 & 0 \end{vmatrix}$$

$$2x^{2} + 4x - 6 = 0$$

$$2(x^{2} + 2x - 3) = 0$$

$$2(x + 3)(x - 1) = 0$$

$$X = -3, 1$$

Find the real zeros:

$$-10x^3 + 15x^2 + 16x - 12 = 0 \quad \frac{p}{q} = \frac{\pm}{1,2,3,4,6,12}$$

Section 2.5A

Pg. 162-165: #9-12, 17, 18, 22, 27, 29-39 odd