Section 2.5 A Synthetic Division Rational Roots

« Use the Fundamental Theorem of Algebra to determine the
number of zeros of polynomial functions.

« Find rational zeros of polynomial functions.

« Find zeros of polynomials by factoring.

The Fundamental Theorem of Algebra

If f(x) is a polynomial of degree n, where n > 0, then f has at least one zero in
the complex number system.

Linear Factorization Theorem
If f(x) is a polynomial of degree n, where n > 0, then f has precisely # linear factors
f) =ac—c)x—e) - (x—c,)

where ¢y, ¢,, . . ., ¢, are complex numbers.

Note that the Fundamental Theorem of Algebra and the Linear Factorization Theorem
tell you only that the zeros or factors of a polynomial exist, not how to find them.



How many zeros and what are they?
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The Rational Zero Test
If the polynomial f(x) = a,x" + a, _,x" ' +- - - + a,x> + a;x + a, has
integer coefficients, every rational zero of f has the form

Rational zero = £

where p and ¢ have no common factors other than 1, and
p = afactor of the constant term a,

q = a factor of the leading coefficient a,,.

Find the rational zeros. T 1

A
f(x)=Lv +x+1 s ?
CIREN e
’ , a 3 uPPerbDund /‘;
X=.6522 .
\:l) 0 ’l :’2 + 2 maginary
R
[ - 2 ‘[ fowﬂbmmd



Find the rational zeros of P L
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Find all of the real zeros.
Helpful hints:
1) rational zero test: p/q

2) intermediate value theorem: (change in signs of
the remainder)

3) upper and lower bound

4) use graphing calculator

Upper and Lower Bound Rules
Let f (x) be a polynomial with real coefficients and a positive leading coefficient.
Suppose f(x) is divided by x — ¢, using synthetic division.

1. If ¢ > 0 and each number in the last row is either positive or zero, ¢ is an
upper bound for the real zeros of f.

2. If ¢ < 0 and the numbers in the last row are alternately positive and negative
(zero entries count as positive or negative), ¢ is a lower bound for the real

zeros of f.




Prove that all of the real zeros lie between the 1nterval [O ‘j(
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What are the potential rational zeros?;~ = 1, 2,50
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Find the real zeros: C_LE._i [,5,25, a8
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Find the real zeros:
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Section 2.5A
Pg. 162-165: #9-12, 17, 18, 22, 27, 29-39 odd
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