Period_

1. Find the value of w, then x. Round lengths of segments to the nearest tenth.

$$tan 42^{\circ} = 12$$

$$\tan 42^{\circ} = \frac{12}{W}$$
 $W = \frac{12}{\tan 42^{\circ}}$ $W = 13.3$

$$\tan 27^{\circ} = 12$$
 $Z = \frac{12}{\tan 27^{\circ}}$ $Z = 23.6$

$$Z-W=x$$

 $X=10.3$

(a) Solve for \(\angle CDA \) 2.

$$\cos 37^{\circ} = \frac{19}{4}$$

$$\cos 37^{\circ} = \frac{19}{y}$$
 $y = \frac{19}{\cos 37^{\circ}} = 23.8$

$$\operatorname{Sin}^{-1}\left(\frac{23.8}{31}\right) = X^{\circ}$$

(b) Solve for side CD. 3.

4.

A police helicopter is flying above a road and between two racing cars driving on this road. The angle of depression to the lead car is 15° and the angle of depression to the trailing car is 40°. The direct distance from the police helicopter to the lead car is 200 m. (See the partial diagram included).

- a. Determine the height/altitude of the helicopter.
- b. Determine the distance between the two race cars.

$$200 \sin |s^{\circ}| = 2$$

 $Z = 51.8 m$

$$200 \cos 15^{\circ} = \chi$$

 $X = 193.2 m$

(T2,A2,K2,C2)

$$tan 40^{\circ} = \frac{51.8}{y}$$

$$y = \frac{51.8}{tan 40^{\circ}}$$

$$y = 61.7$$

5.

Mr. Santowski is about to go rock climbing on the wall of a cliff. He wants to determine the height of the cliff, so from Point A, he observes the top of the cliff with an angle of elevation of 12°. He then moves directly forward 40 meters to Point B. From this new point, he notices the angle of elevation to now be 36°. Use this data to determine the

height of the cliff. (T2,A2,K2)

$$y = (x+40) \tan 12^{\circ}$$

 $y = (x+40) \tan 12^{\circ}$
 $y = x \tan 36^{\circ}$

(X+40) tan12° = x tan36° x tan 12° + 40 tan12° = x tan36° x (tan12° - tan36°) = -40 tan12° X = -40 tan12° tan12° - tan36°