\qquad
Unit 1 day 2 notes \qquad

Exponent of Zero

By definition: a raised to the zero power equals $1 \quad a^{0}=1$

Simplify the following:
$5^{0}=$
$\left(4^{0}\right)^{7}=$
$(-3)^{0}=$

$$
3\left(m^{3} n^{2} p\right)^{0}=
$$

$-7^{0}=$

$$
\frac{x^{2} y^{3}}{x^{0} y^{3}}=
$$

$2 m^{0}=$

Fill in the following table.
Use fractions when appropriate.

$2^{3}=$	
$2^{2}=$	
$2^{1}=$	
$2^{0}=$	
$2^{-1}=$	
$2^{-2}=$	
$2^{-3}=$	

Negative Exponents

a^{-n} is the reciprocal of a^{n}.

$$
a^{-n}=\frac{1}{a^{n}}, a \neq 0
$$

Simplify the following with positive exponents only.
$7^{-3}=$

$$
\frac{1}{2^{-2}}=
$$

$x^{-3}=$
$2 m^{-3}=$
$(2 m)^{-3}=$
$\left(\frac{2 x}{5 y}\right)^{-2}=$

Simplify the following with positive exponents only.
$\frac{m^{-3}}{4 n^{-4}}=\quad \frac{-5^{0}}{10 n^{-4}}=\quad\left(\frac{x^{2} y^{3}}{x^{-1} y}\right)^{2}=$

Fractional Exponents

Rewrite in radical form.
$x^{\frac{1}{2}}$
$(4 m)^{\frac{1}{3}}$
$\left(x^{3}\right)^{\frac{1}{6}}$
$\left(a^{3} b^{5}\right)^{\frac{1}{7}}$

Rewrite with fractional exponents.
$\sqrt{2 m}$
$\sqrt[3]{n^{2}}$
$6 \sqrt{a / b}$
$\sqrt[3]{x^{3} y z^{2}}$

