Honors Math II Unit 1.3 simplifying, adding & subtracting radicals Name_____ Date_____Period_____

Parts of a Radical

For each radical, determine the index number and radicand.

 $\sqrt{24}$ $\sqrt[3]{27}$

 $\sqrt[4]{16xy}$ $\sqrt{128n^8}$

Write all the factor pairs for the given number, then circle the pairs that contain a perfect square.

Г

<u>24</u>	<u>48</u>	<u>20</u>	<u>80</u>	
1•24				
2•12				
3•8				
4•6				

In order to simplify square roots we must look for factors that are perfect squares. <u>For example:</u> there are many ways to multiply two numbers to make 80. We are only interested in the pair that contains a perfect square.

Alternate method is prime factorization.
$\sqrt{80}$

Simplify: (no calculator)

$\sqrt{20}$	$\sqrt{24}$	$\sqrt{25}$ $\sqrt{32}$	$\sqrt{165}$
Simplifying radicals Give an exact answer a	nd an approximate an	swer.	
$\sqrt{12}$	$\sqrt{18}$	$\sqrt{48}$	$\sqrt{128}$
Exact answer:	Exact answer:	Exact answer:	Exact answer:
Approximate:	Approximate:	Approximate:	Approximate:
How do you simplify a	radical if it is not a squ	are root?	
³ √32		³ √56	⁴ √32

Simplify the following radicals. Leave answer in reduced radical form.

$\sqrt{48}$	$\sqrt{54}$
³ √48	3√54

What happens when there is a number out in front of the radical?

$3\sqrt{8}$ $\sqrt{12}$ $5\sqrt{24}$ $4\sqrt{24}$	$3\sqrt{8}$	$7\sqrt{12}$	$5\sqrt{24}$	$4\sqrt[3]{24}$
---	-------------	--------------	--------------	-----------------

Practice:

$\sqrt{105}$ $2\sqrt{96}$ $\sqrt[3]{64}$	³√128
--	-------

What happens when you have variables? Any patterns?

$\sqrt{x^2}$	$\sqrt[3]{x^2}$
$\sqrt{x^3}$	$\sqrt[3]{x^3}$
$\sqrt{x^8}$	$\sqrt[3]{x^8}$
$\sqrt{x^{10}}$	$\sqrt[3]{\chi^{10}}$

Quick Check:

$\sqrt{22 \cdot 2 \cdot 3}$	$3\sqrt{(1-8)}6$
$\sqrt{32\chi^2 \gamma^3}$	$\sqrt{64x^{6}y^{6}}$
V	V J

Adding or Subtracting radicals

 $4\sqrt{3} + 2\sqrt{3} =$

 $4\sqrt{7} - 6\sqrt{7} =$

 $\sqrt{24} + \sqrt{54} =$

$4\sqrt{24} + 3\sqrt{54} =$

Simplify:

 $5\sqrt[3]{2} - \sqrt[3]{16} = 2\sqrt{3} + 5\sqrt[3]{3} =$

$2\sqrt{3x} + \sqrt{3x} = \sqrt{12w} - \sqrt{27w}$