Bell work

Simplify:

1.
$$\sqrt{108}$$

2.
$$-3\sqrt[3]{5} + 7\sqrt[3]{5}$$

3.
$$-2\sqrt{2}(2\sqrt{3}+4\sqrt{6})$$

4.
$$\frac{\sqrt{5}}{3\sqrt{12}}$$

Is the conjecture $\sqrt{x^2} = x$ true for all numbers x?

Use the same exponent rules as before, but this time with rational exponents.

Rule: $a^m \cdot a^n = a^{m+n}$

$$\sqrt[3]{5} \cdot 5^{\frac{3}{2}} =$$

$$2^{\frac{3}{4}} \cdot 2^{.5} =$$

Rule: $(a^m)^n = a^{m \cdot n}$

$$\left(3^{\frac{5}{2}}\right)^2 =$$

$$4(16)^{.25} =$$

Rule: $(ab)^m = a^m b^m$

$$(16 \cdot 9)^{.5} =$$

$$(100n^4)^{\frac{3}{2}} =$$

Rule: $a^{-m} = \frac{1}{a^m}$

$$36^{-\frac{1}{2}} =$$

$$x^{\frac{-4}{3}} =$$

Rule:
$$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$$

$$\frac{3^2}{3^{\frac{1}{2}}} = \frac{x^{\frac{1}{2}}}{x^2} =$$

Rule:
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

$$\left(\frac{27}{64}\right)^{\frac{1}{3}} = \left(\frac{2}{3}\right)^{\frac{1}{2}} =$$

Product Property of Radicals:
$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[3]{12} \cdot \sqrt[3]{18} =$$

Division Property of Radicals:
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\frac{\sqrt[4]{80}}{\sqrt[4]{5}} = \sqrt[3]{\frac{108}{4}} =$$

Simplify:

$\sqrt[3]{64y^6} =$	$(27p^3q^{12})^{\frac{1}{3}} =$
$\sqrt[4]{\frac{m^4}{n^8}} =$	$\frac{14xy^{\frac{1}{3}}}{2x^{\frac{3}{4}}z^{-6}}$
$\sqrt{n^{\circ}}$	$2x^{\frac{5}{4}}z^{-6}$
$\sqrt[5]{4a^8b^{14}c^5} =$	$\sqrt[3]{\frac{x}{y^8}} =$

Simplify:

$$\sqrt[3]{x} =$$

$$\sqrt[3]{\sqrt{64}} =$$

$$\sqrt{5} \cdot \sqrt[3]{5} =$$

$$\sqrt[3]{n} \cdot \sqrt[4]{n} =$$

$$\tfrac{\sqrt{18}\cdot\sqrt{10}}{\sqrt{24}} =$$

$$\frac{\sqrt{6}\cdot\sqrt{14}}{\sqrt{21}} =$$

True or False?

$$8^{\frac{1}{2}} + 8^{\frac{1}{3}} = 8^{\frac{5}{6}}$$

Write each expression in radical form.

$$(4m)^{\frac{2}{3}}$$

 $4m^{\frac{2}{3}}$

Write each expression in exponential form.

$$\sqrt{6n}$$

 $6\sqrt{n}$