Bellwork

1.

2.

3.

5.

Find all missing angles and arcs.

★ If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one half the measure of its intercepted arc.

$$m \angle 1 = \frac{1}{2} \stackrel{\frown}{mAB}$$

$$m \angle 2 = \frac{1}{2} \overrightarrow{mACB}$$

Find mAB

If two lines intersect a circle, there are three places where the lines can intersect.

on the circle

inside the circle

outside the circle

★If two lines intersect *on* the circle, then the measure of the angle formed is half its intercepted arc.

$$m \angle 1 = \frac{1}{2} \widehat{mBC}$$

★If two chords intersect *inside* a circle, then the measure of each angle is one half the *sum* of the measures of the arcs, intercepted by the angle and its vertical angle.

$$m \angle 2 = \frac{1}{2} (mBD + mCB)$$

Find the value of x.

★ If two lines intersect outside a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs.

$$m\angle 2 = \frac{1}{2} (m\overrightarrow{AB} - m\overrightarrow{BC})$$
 $m\angle 3 = \frac{1}{2} (m\overrightarrow{ACB} - m\overrightarrow{AB})$

$$m \angle 3 = \frac{1}{2} (mACB - mAB)$$

Find the value of x.

