Triangle Proportionality Theorem

*If a line parallel to one side of a triangle intersects the other two side, then it divides the two sides proportionally.

If
$$\overline{TU} \parallel \overline{QS}$$
, then $\frac{RT}{TQ} = \frac{RU}{US}$

 $\overline{QS} \parallel \overline{UT}$ What is the length of \overline{RQ} ?

 $\overline{QS} \parallel \overline{UT}$ What is the length of \overline{UT} ?

Find the value of x and y.

What is the length of \overline{WX} ?

Converse of the Triangle Proportionality Theorem

*If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

If
$$\frac{RT}{TQ} = \frac{RU}{US}$$
, then $\overline{TU} \parallel \overline{QS}$

Determine whether \overline{BC} is parallel to \overline{DE} from the given proportions.

1.
$$\frac{AB}{BD} = \frac{AC}{CE}$$

$$2. \quad \frac{AC}{CE} = \frac{BC}{DE}$$

3.
$$\frac{BD}{CE} = \frac{AB}{AC}$$

Three parallel lines Theorem

*If three or more parallel lines intersect two transversals, then they divide the transversals proportionally.

$$\frac{a}{b} = \frac{x}{y}$$

Write 3 other proportions that are true.

Find the value of x.

Triangle Angle Bisector Theorem

*An angle bisector of a triangle will divide the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

$$\frac{a}{b} = \frac{x}{y}$$

b y

Write another true proportion.

Find the value of x.

