Honors Math II Unit 2 day 1 notes

1.0

Bell work

 x^{10}

 $\overline{x^{-2}}$

 $(-3)^3(-3)^4$

Simplify:

 $\frac{-6^0}{3m^2}$

 $\left(\frac{x^{12}}{y^4}\right)^{\frac{3}{4}}$

Polynomial function

$$\begin{split} f(x) &= a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 \\ \text{leading coefficient: } a_n \\ \text{degree: } n \\ \text{constant term: } a_0 \end{split}$$

Degree	Туре	Example
0	Constant	
1	Linear	
2	Quadratic	
3	Cubic	
4	Quartic	

What if the expression has more than 1 variable, how do you find the degree?

Name		
Period	Date	

Polynomials can also be classified by the number of terms as well as its degree.

Monomial	Binomial	Trinomial

- Polynomial Function (WHOLE # Exponents for the variables)
- (in standard form the powers are decreasing)
- Leading Coefficient is # in the front of the polynomial if it is in <u>standard form</u>.
- Remember for the variables only No Negative Exponents No Variable Exponents No Fractional Exponents

Identify whether the following are polynomials. If it is a polynomial state the degree, type, leading coefficient, and constant.

1.
$$g(x) = x^4 - \frac{1}{4}x^2 + 3$$

- 2. $k(x) = 7x \sqrt{3} + \pi x^2$
- 3. $f(x) = 5x^2 + 3x^{-1} x$
- 4. $h(x) = x + 2^x .6x^5$

Add or subtract the following polynomials.	8. $(x + 4)(x - 6)(x - 5)$
1. $(2y^2 - 5y + 1) + (y^2 - y - 4)$	
2. $(5x^4 - 3x^3 + 9) - (-2x^4 + 8x^2 - x + 2)$	
3. $(4x^5 + 3x^4 - 5x + 1) - (x^3 + 2x^4 - x^5 + 1)$	9. (2c + 5) ²
4. $(2y^2 + \boxed{y+1} + (y^2 - 4) = \boxed{y^2 - 6y - 3}$	10. (5p – 3)(5p + 3)
Find the product 4. $2x^3(5x - 1)$	11. $(2x + 1)^3$
5. $(2x - 4)(3x + 1)$	
6. $(y-1)(y^2+6y-3)$	Find two polynomials with a sum and product that have the following degrees. If you cannot find the polynomials, explain why. a) sum degree 4 and product is degree 4
7. $(-x^2 + 4x + 1)(x^2 - 8x + 3)$	b) sum degree 3 and product is degree 5
	c) sum degree 2 and product degree 1