Honors Math II
Unit 2 day 1 notes

Bell work

Simplify:
$\frac{-6^{0}}{3 m^{2}}$

$$
\frac{x^{10}}{x^{-2}}
$$

$$
\left(\frac{x^{12}}{y^{4}}\right)^{\frac{3}{4}}
$$

$$
(-3)^{3}(-3)^{4}
$$

Polynomial function

$\mathrm{f}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{X}^{\mathrm{n}}+\mathrm{a}_{\mathrm{n}-1} \mathrm{X}^{\mathrm{n}-1}+\ldots+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{0}$ leading coefficient: a_{n}
degree: n
constant term: ao

Degree	Type	Example
0	Constant	
1	Linear	
2	Quadratic	
3	Cubic	
4	Quartic	

What if the expression has more than 1 variable, how do you find the degree?

Name \qquad
Period \qquad Date \qquad

Polynomials can also be classified by the number of terms as well as its degree.

Monomial	Binomial	Trinomial

- Polynomial Function (WHOLE \# Exponents for the variables)
- (in standard form the powers are decreasing)
- Leading Coefficient is \# in the front of the polynomial if it is in standard form.
- Remember for the variables only No Negative Exponents No Variable Exponents No Fractional Exponents

Identify whether the following are polynomials. If it is a polynomial state the degree, type, leading coefficient, and constant.

1. $g(x)=x^{4}-\frac{1}{4} x^{2}+3$
2. $k(x)=7 x-\sqrt{3}+\pi x^{2}$
3. $f(x)=5 x^{2}+3 x^{-1}-x$
4. $h(x)=x+2^{x}-.6 x^{5}$

Add or subtract the following polynomials.

1. $\left(2 y^{2}-5 y+1\right)+\left(y^{2}-y-4\right)$
2. $\left(5 x^{4}-3 x^{3}+9\right)-\left(-2 x^{4}+8 x^{2}-x+2\right)$
3. $\left(4 x^{5}+3 x^{4}-5 x+1\right)-\left(x^{3}+2 x^{4}-x^{5}+1\right)$
4.

$\left(2 y^{2}+\square y+1\right)+\left(y^{2}-4\right)=\square y^{2}-6 y-3$

Find the product

4. $2 x^{3}(5 x-1)$
5. $(2 x-4)(3 x+1)$
6. $(y-1)\left(y^{2}+6 y-3\right)$
7. $\left(-x^{2}+4 x+1\right)\left(x^{2}-8 x+3\right)$
8. $(x+4)(x-6)(x-5)$
9. $(2 c+5)^{2}$
10. $(5 p-3)(5 p+3)$
11. $(2 x+1)^{3}$

Find two polynomials with a sum and product that have the following degrees. If you cannot find the polynomials, explain why.
a) sum degree 4 and product is degree 4
b) sum degree 3 and product is degree 5
c) sum degree 2 and product degree 1

