BellWork

Simplify:

$$\frac{-6^{\circ}}{3m^2} = \frac{-1}{3m^2}$$

$$\frac{x^{(0)}}{x^{-2}} = X^{(0)+2} = X^{(2)}$$

$$\left(\frac{x^{12}}{y^4}\right)^{\frac{3}{4}} = \frac{x^9}{4}$$

$$\frac{(3/4)^{\frac{3}{4}}}{(3/4)^{\frac{3}{4}}} = \frac{x^9}{4}$$

$$(-3)^3(-3)^4$$

 $(-3)^7 = -2187$

Polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

leading coefficient: a_n

degree: n

constant term: a_0

$$f(x) = 3x^{5} - 7x^{4} + 3x^{3} - 8x^{4} + x' - 20$$

$$f(x) = -27x^{10} + 9$$

Degree	Type	Example
0	Constant	$f(x) = 5x^{\circ}$ f(x) = 5 $y = -20$
1	Linear	f(x)=3x'+5 y=x
2	Quadratic	$f(x)=7x^2-3x+1$ $y=5x^2-3$
3	Cubic	$f(x) = X_3$
4	Quartic	$A = X_{d}$ $A = X_{d} - 10X_{\sigma} + 1$
5	Quintic	y=X5

What if the expression has more than 1 variable, how do you find the degree?

Polynomials can also be classified by the number of terms as well as its degree.

monomial

binomial

trinomial

Polynomial Function (WHOLE # Exponents for the variables)

(in standard form the powers are decreasing)

Leading Coefficient is # in the front of the polynomial if it is in <u>standard form</u>.

Remember for the variables only

No Negative Exponents on the variables
No Variable Exponents
No Fractional Exponents on the variables

Identify whether the following are polynomials.

If it is a polynomial state the degree, type, leading coefficient, and constant.

1.
$$g(x) = 1x^4 - \frac{1}{4}x^2 + 3$$
polynomial
Lc: |

2.
$$k(x) = 7x - \sqrt{3} + \pi x^{2}$$

$$polynomial \quad K(x) = \pi x^{2} + 7x - \sqrt{3}$$

$$L \cdot C : \pi \quad constant : -\sqrt{3} \quad quadratic$$

$$3. \quad f(x) = 5x^{2} + 3x^{-1} - x$$

3.
$$f(x) = 5x^2 + 3x^{-1} - x$$
Not polynomial

4.
$$h(x) = x + 2^{x} - .6x^{5}$$

Not polynomial

Add or subtract the following polynomials.

1.
$$(2y^2 - 5y + 1) + (y^2 - y - 4)$$

 $3y^2 - 6y - 3$

2.
$$(5x^4 - 2x^3 + 9) + (+2x^4 + -8x^2 + x + -2)$$

 $7x^4 - 2x^3 - 8x^2 + x + 7$

Find the sum, the difference or fill in the \square with the missing information.

3.
$$(4x^5 + 3x^4 - 5x + 1) + (x^3 + 2x^4 + x^5 + 1)$$

 $5 \times 5 + \times 4 - 2 \times 3 - 5 \times 4 \times 1$

4.
$$(2y^2 + 4y + 1) + (y^2 - 4) = 3y^2 - 6y - 3$$

Find the product

4.
$$2x^{3}(5x-1)$$

5.
$$(2x-4)(3x+1)$$

$$6x^{2}+2x-12x-4$$

$$6x^{2}-10x-4$$

6.
$$\frac{y^{3}+6y^{2}-3y}{-y^{3}-6y+3}$$

$$\frac{y^{3}+6y^{2}-3y}{-4y+3}$$

7.
$$(7 + 1)(x^{2} - 8x + 3)$$

$$-\chi^{4} + 8x^{3} - 3x^{2}$$

$$+ \chi^{3} - 32x^{2} + 12x$$

$$+ \chi^{2} - 8x + 3$$

$$-\chi^{4} + 12x^{3} - 34x^{2} + 4x + 3$$

8.
$$(x + 4)(x - 6)(x - 5)$$

 $(x+4)(x^2-5x-6x+30)$ $(2\cdot3) 4$
 $(x+4)(x^2-1)x+30)$ $(6\cdot4 = 24)$
 $(x+4)(x^2-1)x+30)$ $(3\cdot4)$
 $(x+4)(x^2-1)x+30$ $(3\cdot4)$
 $(x+4)(x^2-1)x+30$ $(2\cdot3) 4$
 $(x+4)(x^2-1)x+30$ $(2\cdot3) 4$
 $(x+4)(x^2-1)x+30$ $(2\cdot3) 4$
 $(3\cdot4)(x+120)$ $(3\cdot4)(x+120)$

9.
$$(2c+5)^2$$

$$(2c+5)(2c+5)$$

$$4c^2+10c+10c+25$$

$$4c^2+20c+25$$

10.
$$(5p-3)(5p+3)$$

 $25p^{3}+15p-15p-9$
 $25p^{3}-9$

11.
$$(2x+1)^3$$

$$(2x+1)(2x+1)(2x+1)$$

$$(2x+1)(4x^2+2x+2x+1)$$

$$(2x+1)(4x^2+4x+1)$$

$$(2x+1)(4x^2+2x+2x+1)$$

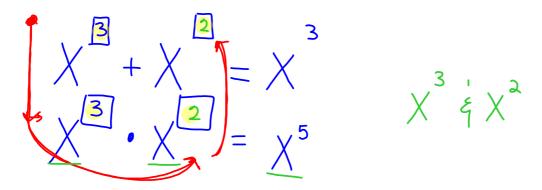
$$(2x+1)(4x^2+2x+2x+1)$$

$$(2x+1)(4x^2+2x+2x+1)$$

$$(2x+1)(4x^2+2x+2x+1)$$

Find two polynomials with a sum and product that have the following degrees. If you cannot find the polynomials, explain why.

b) sum degree 3 and product is degree 5



c) sum degree 2 and product degree 1

Not possible