Problems #3-29 odd, 31-39, 41-47 odd, 52-58

EQUATIONS IN STANDARD FORM Use the quadratic formula to solve the equation.

3.
$$x^2 - 4x - 5 = 0$$
 4. $x^2 - 6x + 7 = 0$ 5. $t^2 + 8t + 19 = 0$

4.
$$x^2 - 6x + 7 = 0$$

5.
$$t^2 + 8t + 19 = 0$$

6.
$$x^2 - 16x + 7 = 0$$

7.
$$8w^2 - 8w + 2 = 0$$

6.
$$x^2 - 16x + 7 = 0$$
 7. $8w^2 - 8w + 2 = 0$ 8. $5p^2 - 10p + 24 = 0$

9.
$$4x^2 - 8x + 1 = 0$$

10.
$$6u^2 + 4u + 11 = 0$$

9.
$$4x^2 - 8x + 1 = 0$$
 10. $6u^2 + 4u + 11 = 0$ 11. $3r^2 - 8r - 9 = 0$

12. ★ MULTIPLE CHOICE What are the complex solutions of the equation $2x^2 - 16x + 50 = 0$?

$$(A)$$
 4 + 3*i*, 4 - 3*i*

B
$$4 + 12i, 4 - 12i$$

©
$$16 + 3i$$
, $16 - 3i$

(D)
$$16 + 12i$$
, $16 - 12i$

EQUATIONS NOT IN STANDARD FORM Use the quadratic formula to solve the equation.

13.
$$3w^2 - 12w = -12$$
 14. $x^2 + 6x = -15$ 15. $s^2 = -14 - 3s$

14.
$$x^2 + 6x = -15$$

15.
$$s^2 = -14 - 3s$$

16.
$$-3y^2 = 6y - 10$$

17.
$$3 - 8\nu - 5\nu^2 = 2\nu$$

16.
$$-3y^2 = 6y - 10$$
 17. $3 - 8y - 5y^2 = 2y$ 18. $7x - 5 + 12x^2 = -3x$

(19.)
$$4x^2 + 3 = x^2 - 7x$$
 20. $6 - 2t^2 = 9t + 15$ 21. $4 + 9n - 3n^2 = 2 - n$

20.
$$6 - 2t^2 = 9t + 15$$

21.
$$4 + 9n - 3n^2 = 2 - n$$

SOLVING USING TWO METHODS Solve the equation using the quadratic formula. Then solve the equation by factoring to check your solution(s).

22.
$$z^2 + 15z + 24 = -32$$
 23. $x^2 - 5x + 10 = 4$

23.
$$x^2 - 5x + 10 = 4$$

24.
$$m^2 + 5m - 99 = 3m$$

25.
$$s^2 - s - 3 = s$$

26.
$$r^2 - 4r + 8 = 5r$$

27.
$$3x^2 + 7x - 24 = 13x$$

28.
$$45x^2 + 57x + 1 = 5$$

29.
$$5p^2 + 40p + 100 = 25$$

29.
$$5p^2 + 40p + 100 = 25$$
 30. $9n^2 - 42n - 162 = 21n$

USING THE DISCRIMINANT Find the discriminant of the quadratic equation and give the number and type of solutions of the equation.

31.
$$x^2 - 8x + 16 = 0$$
 32. $s^2 + 7s + 11 = 0$ 33. $8p^2 + 8p + 3 = 0$

32
$$s^2 + 7s + 11 = 0$$

33
$$8n^2 + 8n + 3 = 0$$

34.
$$-4w^2 + w - 14 = 0$$

35.
$$5x^2 + 20x + 21 = 0$$

34.
$$-4w^2 + w - 14 = 0$$
 35. $5x^2 + 20x + 21 = 0$ **36.** $8z - 10 = z^2 - 7z + 3$

37.
$$8n^2 - 4n + 2 = 5n - 11$$
 38. $5x^2 + 16x = 11x - 3x^2$

38.
$$5r^2 + 16r = 11r - 3r^2$$

(39.)
$$7r^2 - 5 = 2r + 9r^2$$

SOLVING QUADRATIC EQUATIONS Solve the equation using any method.

40.
$$16t^2 - 7t = 17t - 9$$

40.
$$16t^2 - 7t = 17t - 9$$
 41. $7x - 3x^2 = 85 + 2x^2 + 2x$ **42.** $4(x - 1)^2 = 6x + 2$

42.
$$4(x-1)^2 = 6x + 2$$

43.
$$25 - 16v^2 = 12v(v + 5)$$

44.
$$\frac{3}{2}y^2 - 6y = \frac{3}{4}y - 9$$

43.
$$25 - 16v^2 = 12v(v+5)$$
 44. $\frac{3}{2}y^2 - 6y = \frac{3}{4}y - 9$ **45.** $3x^2 + \frac{9}{2}x - 4 = 5x + \frac{3}{4}$

46.
$$1.1(3.4x - 2.3)^2 = 15.5$$
 47. $19.25 = -8.5(2r - 1.75)^2$ **48.** $4.5 = 1.5(3.25 - s)^2$

47.
$$19.25 = -8.5(2r - 1.75)^2$$

48.
$$4.5 = 1.5(3.25 - s)^2$$

Visual Thinking. In Exercises 52-54, the graph of a quadratic function $y = ax^2 + bx + c$ is shown. Tell whether the discriminant of $ax^2 + bx + c = 0$ is *positive*, *negative* or *zero*.

52.

53.

54.

Write a quadratic equation in the form $ax^2 + bx + c = 0$ such that c = 4 and the equation has the given solutions.

55.
$$-4$$
 and 3

56.
$$\frac{-4}{3}$$
 and -1

57.
$$-1+i$$
 and $-1-i$

58. For the period of 1990-2002, the number S (in thousands) of cellular telephone subscribers in the United States can be modeled by $S=858t^2+1412t+4982$ where t is the number of years since 1990. In what year did the number of subscribers reach 50 million?

a) 1991

b) 1992

c) 1996

d) 2000