Name
Unit 4 day 6
Period \qquad Date \qquad

Problems \#3-29 odd, 31-39, 41-47odd, 52-58

EQUATIONS IN STANDARD FORM Use the quadratic formula to solve the equation.
3. $x^{2}-4 x-5=0$
4. $x^{2}-6 x+7=0$
5. $t^{2}+8 t+19=0$
6. $x^{2}-16 x+7=0$
7. $8 w^{2}-8 w+2=0$
8. $5 p^{2}-10 p+24=0$
9. $4 x^{2}-8 x+1=0$
10. $6 u^{2}+4 u+11=0$
11. $3 r^{2}-8 r-9=0$
12. \star MULTIPLE CHOICE What are the complex solutions of the equation $2 x^{2}-16 x+50=0$?
(A) $4+3 i, 4-3 i$
(B) $4+12 i, 4-12 i$
(C) $16+3 i, 16-3 i$
(D) $16+12 i, 16-12 i$

EQUATIONS NOT IN STANDARD FORM Use the quadratic formula to solve the equation.
13. $3 w^{2}-12 w=-12$
14. $x^{2}+6 x=-15$
15. $s^{2}=-14-3 s$
16. $-3 y^{2}=6 y-10$
17. $3-8 v-5 v^{2}=2 v$
18. $7 x-5+12 x^{2}=-3 x$
(19.) $4 x^{2}+3=x^{2}-7 x$
20. $6-2 t^{2}=9 t+15$
21. $4+9 n-3 n^{2}=2-n$

SOLVING USING TWO METHODS Solve the equation using the quadratic formula. Then solve the equation by factoring to check your solution(s).
22. $z^{2}+15 z+24=-32$
23. $x^{2}-5 x+10=4$
24. $m^{2}+5 m-99=3 m$
25. $s^{2}-s-3=s$
26. $r^{2}-4 r+8=5 r$
27. $3 x^{2}+7 x-24=13 x$
28. $45 x^{2}+57 x+1=5$
29. $5 p^{2}+40 p+100=25$
30. $9 n^{2}-42 n-162=21 n$

USING THE DISCRIMINANT Find the discriminant of the quadratic equation and give the number and type of solutions of the equation.
31. $x^{2}-8 x+16=0$
32. $s^{2}+7 s+11=0$
33. $8 p^{2}+8 p+3=0$
34. $-4 w^{2}+w-14=0$
35. $5 x^{2}+20 x+21=0$
36. $8 z-10=z^{2}-7 z+3$
37. $8 n^{2}-4 n+2=5 n-11$
38. $5 x^{2}+16 x=11 x-3 x^{2}$
(39.) $7 r^{2}-5=2 r+9 r^{2}$

SOLVING QUADRATIC EQUATIONS Solve the equation using any method.
40. $16 t^{2}-7 t=17 t-9$
41. $7 x-3 x^{2}=85+2 x^{2}+2 x$
42. $4(x-1)^{2}=6 x+2$
43. $25-16 \nu^{2}=12 \nu(\nu+5)$
44. $\frac{3}{2} y^{2}-6 y=\frac{3}{4} y-9$
45. $3 x^{2}+\frac{9}{2} x-4=5 x+\frac{3}{4}$
46. $1.1(3.4 x-2.3)^{2}=15.5$
47. $19.25=-8.5(2 r-1.75)^{2}$
48. $4.5=1.5(3.25-s)^{2}$

Visual Thinking. In Exercises 52-54, the graph of a quadratic function $y=a x^{2}+b x+c$ is shown. Tell whether the discriminant of $a x^{2}+b x+c=0$ is positive, negative or zero.
52.

53.

54.

Write a quadratic equation in the form $a x^{2}+b x+c=0$ such that $\mathrm{c}=4$ and the equation has the given solutions.
55. -4 and 3
56. $\frac{-4}{3}$ and -1
57. $-1+i$ and $-1-i$
58. For the period of 1990-2002, the number S (in thousands) of cellular telephone subscribers in the United States can be modeled by $S=858 t^{2}+1412 t+4982$ where t is the number of years since 1990. In what year did the number of subscribers reach 50 million?
a) 1991
b) 1992
c) 1996
d) 2000

