Unit 3.4

Bell Work:

1. Decide whether the following is a function.

$$(-1,-5)$$
 (1) 2) $(3,4)$ (1) -7)

NO

What is the domain? The range?

D:
$$\{-1, 1, 3\}$$

R: $\{-7, -5, 2, 4\}$
2. $f(x) = 16 - 7x$ Find $f(-5)$

The **SLOPE** of a non vertical line is:

$$\frac{\Delta y}{\Delta x} = \frac{\text{Rise}}{\text{Run}} \quad m = \frac{y_2 - y_1}{x_2 - x_1}$$

Find the slope of the given points.

$$(4, 6) (4, -1)$$

$$(-4, 5)$$
 $(6, -7)$

$$m = \frac{6+1}{4-4} = \frac{7}{0} = undefined$$
 $m = \frac{5+7}{-4-6} = \frac{12}{-10} = \frac{-6}{5}$

$$m = \frac{-1-6}{4-4} = \frac{-7}{0} = \text{undefined}$$

(2, -3) (0, -3)

$$M = \frac{-3++3}{2-0} = \frac{0}{2} = 0$$

$$M = -3+13 = \frac{0}{2} = 0$$

Rate of Change:

Miles per hour, degrees per day

(2,12) and (5,30) x is measure in hours and y is measured in dollars.

What is the rate of change?

$$\frac{\text{dollars}}{\text{hour}} = \frac{12-30}{2.5} = \frac{-18}{-3} = 6 \frac{\text{dollars}}{\text{hr}}$$

Classify lines by their slope:

Without graphing: Describe the line through the 2 points.

$$(-5, 1) & (3, 1) = horizontal$$

 $(-6, 0) & (2, -4) = slanted$
 $(4, 6) & (4, -1) = vertical$

Parallel Lines

Have the EXACT SAME slope.

$$\mathbf{m}_1 = \mathbf{m}_2$$

Line 1: (-3, 2) and (5, 0)
$$m_1 = \frac{2-\delta}{-3-5} = \frac{2}{-8} = \frac{-1}{4}$$

Line 2: (-1, -4) and (0, 4) $m_2 = \frac{-4-4}{1-0} = \frac{-8}{-1} = 8$

Perpendicular Lines Have OPPOSITE RECIPROCAL

$$m_1 = \frac{1}{m_2} \qquad m_1 = \frac{1}{4} \perp m_2 = \frac{1}{4} \\ m_1 = \frac{1}{2} \perp m_2 = 2$$

$$m_1 = 4 \perp m_2 = -\frac{1}{4}$$
 $m_1 = -\frac{1}{2} \perp m_2 = 2$

$$m_1 = 0 \perp m_2 = undef$$

Line 1: (3, -1) and (6, -4)
$$m_1 = \frac{-1+14}{3-6} = \frac{3}{-3} = -1$$

Line 2: (-4, 5) and (-2, 7) $m_2 = \frac{5-1}{-4+12} = \frac{-2}{-2} = 1$

Standard form

$$\underbrace{Ax + By}_{\uparrow} = C$$

Finding intercepts

$$2x + 6y = 12$$

$$X-intercept / Y=0$$

$$2x + 6(0) = 12$$

$$2x = 12$$

$$4=6$$

$$X-intercept:$$

$$(6,0)$$

ntercept
$$/ Y=0$$
 $Y-intercept / X=0$
 $2X+6(0)=12$ $2(0)+6y=12$
 $2X=12$ $2X=12$ $2X=12$
 $2X=12$ $2X=12$
 $3X=12$ $3X=12$
 $3X=12$ $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=12$
 $3X=1$

Find the x and y intercepts for the given line.

$$5x + 14y = 10$$

 $x - int$:
 $5x + 14(0) = 10$
 $5x = 10$
 $x = 2$
 $(2,0)$
 $y = \frac{10}{14} = \frac{5}{7}$
 $(0,5/7)$

★ Memorize ★

Equation for a horizontal line

$$y = #$$

Equation for a vertical line

$$\mathbf{x} = \#$$

Writing equations of lines

Given the slope and a point:

Know these

$$y = a(x - h) + k$$

$$y = a|x - h| + k$$

$$y = a(x - h)^{2} + k$$

$$y = a\sqrt{x - h} + k$$

$$y = a\sqrt[3]{x - h} + k$$

Write the equation of a line with a slope m = 1/4, and passing through (-2, 3)

$$y = a(x-h)+k$$

 $y = \frac{1}{4}(x++2)+3$
 $y = \frac{1}{4}(x+2)+3$

Write and graph an equation of the line that passes through the given point (-4, 6) and parallel to the

line
$$y = 2x + 4$$
 line 1 (h, K)

line $a \Rightarrow m = 2$

$$y=2(x++4)+6$$

 $y=2(x+4)+6$

Write and graph an equation of the line that passes through the given point (-4, 6) and perpendicular to

the line y = 2x + 4 line 1

line
$$2 \Rightarrow \pm m = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x+4) + 6$$

$$M = \frac{-2 - 8}{-5 + 13} = \frac{-10}{-2} = 5$$

$$y = a(x-h) + K$$

$$y=5(x++5)-2$$

 $y=5(x+5)-2$

Write an equation of the line that passes through

(1, 4) and is:

b) perpendicular to y = -2

d) perpendicular to x = -2

17. Graph and write the equation of the line through the points (-4, -1) and (2, 3). $\lim_{m \to \infty} \frac{1}{3} = \frac{-3}{3}$ What is the domain, range and x and y intercepts of the line?

Write the equation of the lines that are parallel and perpendicular to the above equation that goes through the point (8, -2). Graph the 2 lines.

$$y=a(x-h)+K$$

parallel $y=\frac{2}{3}(x-8)-2$

perpendicular $y=-\frac{2}{3}(x-8)-2$