| Precalculus                              |                          |                                           | Name                   |                                |
|------------------------------------------|--------------------------|-------------------------------------------|------------------------|--------------------------------|
| Review 1.6-1.10                          |                          |                                           | Period                 | Date                           |
| 1. Which of the fol<br>a) $3x^2 + y = 9$ | <b>e i</b>               | esent a function of x?<br>c) $x+2y^2 = 6$ | d) $y = 5x^2 + 3$      | <b>e)</b> $3x^2 + 3 x  = y$    |
| 2. Which of the fol                      | lowing does not repr     | esent a function of x?                    |                        |                                |
| a) $x^2 + y^2 = 9$                       | <b>b)</b> $x + 4y = -4y$ | <b>c)</b> $x^2 + 2y = 6$                  | <b>d</b> ) $y =  x+3 $ | <b>e)</b> $\frac{1}{2} x  = y$ |

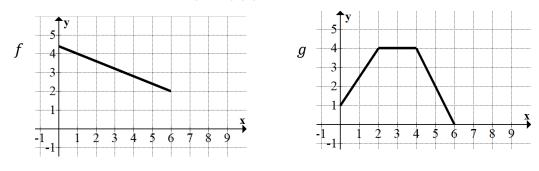
3. A function is a reflection in the x - axis and a vertical shift of 5 units up of the graph of f(x) = |x|. Write an equation for the function.

4. A function is a reflection in the *y* – *axis* and a vertical shift of 4 units down of the graph of  $f(x) = \sqrt{x}$ . Write an equation for the function.

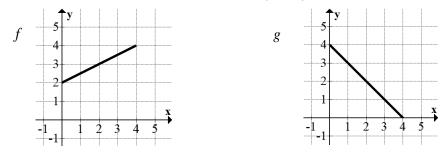
5. Given:  $f(x) = 2\sqrt{x+3} - 4$ . Write the equation of the reflection of *f* in the *y* – *axis*.

6. Given: f(x) = x and  $g(x) = x^2 - 7$ , find (f + g)(3).

7. Given f(x) = x and  $g(x) = x^2 - 7$ , find (fg)(3).


8. Given f(x) = x and  $g(x) = x^2$ , find  $\left(\frac{f}{g}\right)(-2)$ .

9. Given  $f(x) = x^2$  and  $g(x) = \sqrt{x-6}$ , find  $(g \circ f)(-3)$ .


10. Given  $f(x) = x^2$  and  $g(x) = \sqrt{x-6}$ , find  $(f \circ g)(10)$ .

11. Using 
$$f(x) = \frac{x}{2} + \frac{2}{x}$$
  $g(x) = 4x^2 + 2x - 3$  Find  $(f \circ g)(2)$ 

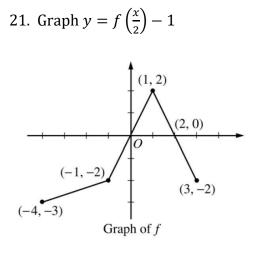
12. Use the graphs of f and g to evaluate  $(f \circ g)(0)$ .

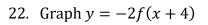


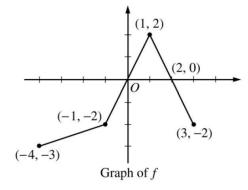
13. Use the graphs of f and g to evaluate  $(f \circ g)(2)$ 



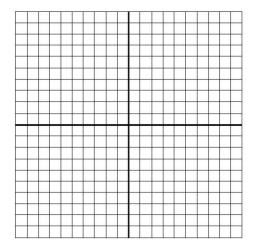
14. Find the inverse function of  $f(x) = \frac{3x+6}{x-2}$ .


15. Find the inverse of the function  $f(x) = \frac{x-4}{2x+1}$ 


16. Find the inverse of the function  $f(x) = \frac{5x+7}{2x-9}$ 


17. Transform the given function by a vertical stretch by a factor of 2:  $f(x) = x^3 - 4x$ 

18. Transform the given function by a vertical shrink by a factor of  $\frac{1}{2}$ :  $f(x) = 3x^2 - 4x + 6$ 


- 19. Transform the given function by a horizontal shrink by a factor of  $\frac{1}{2}$ :  $f(x) = x^2 4$
- 20. Transform the given function by a horizontal stretch by a factor of  $3: f(x) = x^2 6x + 4$

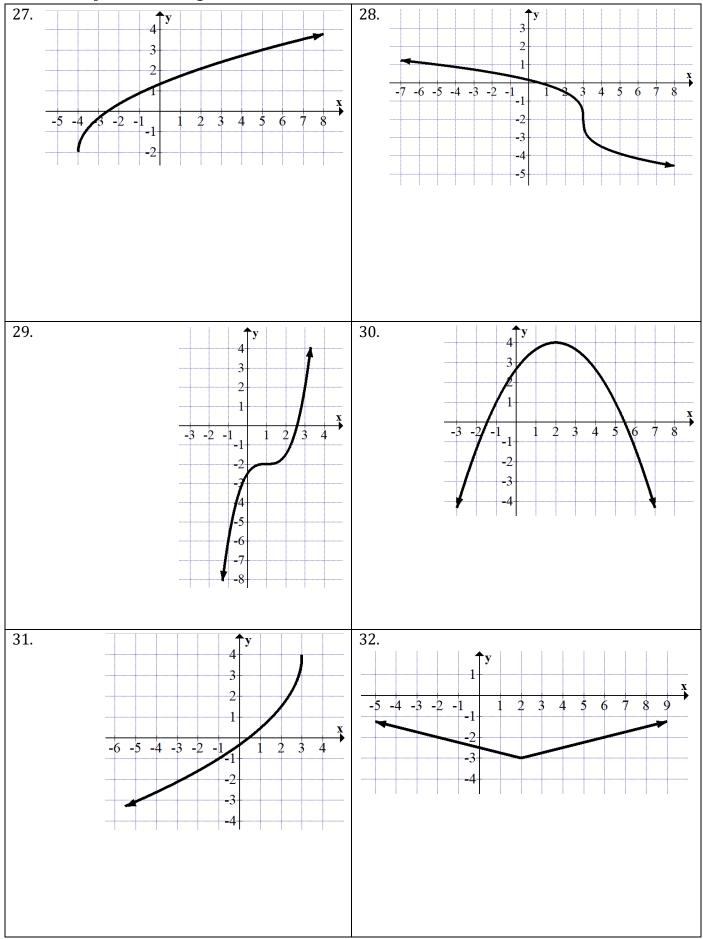






| 1 1      |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | - |
|          |   |   |   |   |   |   |   |   |   |   |   |   | - |   |   |   |   |   |   |
| -        | - | - | - | - |   |   | - |   | - | - |   |   | - |   | - | - | - | - | - |
|          | - | - |   |   | _ |   | - | - | - |   | - | _ | - |   |   | - | - |   | - |
|          |   |   | - | _ | _ | - | _ | - | _ |   | _ |   | - | - | - | - | - |   | - |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   | - |   |   |   |   |   |   |   |   |   |   | - |   |   | - | - |   | _ |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| $\vdash$ | - |   | - |   | _ | - | _ | - | - |   |   |   | - | - |   |   | - | - | - |
|          | _ |   |   |   |   |   | _ |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   | _ |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |




Find the inverse of the following functions. State the domain restrictions when necessary.

23.  $f(x) = 2\sqrt{x-4} + 6$ 24.  $f(x) = \sqrt{x} + 2$ 

25. Are the following inverses? f(x) = 2x - 6 and  $g(x) = \frac{1}{2}x + 3$ Verify your results by showing f(g(x)) = x and g(f(x)) = x.

26. Are the following inverses? f(x) = 3x - 2  $g(x) = \frac{x+2}{3}$ Verify your results by showing f(g(x)) = x and g(f(x)) = x.

## Write the equation for the given functions.



33. Write the linear function that passes through f(3) = 7 and g(1) = -8.

34. If f(x) = x + 3 and  $g(x) = \sqrt{8 - x}$ , then what is the domain of  $\frac{f}{g}$ ?

35. If 
$$f(x) = \begin{cases} -4x + 7 & \text{if } x > 3\\ (x - 3)^2 & \text{if } x \le 3 \end{cases}$$
, then find  $f(3)$  and  $f(-2)$ .

36. Given:  $f(x) = 2x^2 - 3x$  and g(x) = -x + 7, find  $(f \circ g)(x)$ .

37. State the type of transformation demonstrated.

a) 
$$4f(x)$$

- b) *f*(4*x*)
- c)  $f\left(\frac{x}{4}\right)$
- d)  $\frac{1}{4}f(x)$

Extra Practice: Pg. 106-108: #67, 68, 70-78, 81, 83, 87-90, 93, 95-99