Bell Work

Given the following function:

$$h(x) = \frac{2x - 4}{x^2 - 4}$$

Holes:

Vertical Asymptote:

Horizontal Asymptote:

Find the vertical and horizontal asymptotes without your calculator.

1.
$$y = \frac{2x^2}{x^2 - 9}$$

4.
$$y = \frac{x^2}{3(x^2 - 1)}$$

2.
$$y = \frac{x^3 + 3x - 4}{2 - x}$$

5.
$$g(x) = \frac{4x - 4}{2x^2 + x - 3}$$

3.
$$y = \frac{4}{x^2 + 2}$$

6.
$$f(x) = \frac{4x - 2}{4x^2 - 1}$$

End behavior Asymptotes:

vertical asymptotes:

Set the factors of the denominator = 0, then solve for x

horizontal asymptotes: think of end behavior

Think about large values of x, what line do the answers approach?

Compare the degree & leading coefficient of the numerator and denominator:

$$f(x) = \frac{nx^a}{mx^b}$$

- a) a < b, y = 0 $f(x) = \frac{nx^a}{mx^b}$ b) a = b, y = n/m (ratio of leading coefficients)
 - c) a > b, y = higher degree polynomial

Focusing on case 3 today where the degree of the numerator is bigger than the degree of the denominator.

**They are not classified as horizontal or vertical asymptotes.

**There will not be a horizontal asymptote in this case.

Naming higher degree end behavior asymptotes:

Find the difference in the degrees of the numerator and denominator.

Function	Name the higher degree end behavior asympotote.
$f(x) = \frac{x^4 + 2x^2 - 1}{x^3 + 1}$	
$f(x) = \frac{x^4 - 2x + 7}{x^2 - 1}$	
$f(x) = \frac{x^4 - 1}{x - 1}$	

Given the following function find the end behavior asymptote and name it.

$$f(x) = \frac{x^3 - 3x^2 + 3x + 1}{x - 1}$$

Given the following function find the end behavior asymptote and name it.

$$f(x) = \frac{2x^2 + 2x - 3}{x + 3}$$

Given the following function find the end behavior asymptote and name it.

$$f(x) = \frac{x^5 + 1}{x^2 + 1}$$

Draw the graph of the rational function and show all asymptotes.

$$g(x) = \frac{2x^3 - 2x^2 - x - 5}{x - 2}$$

$$f(x) = \frac{x^3 + 1}{x - 1}$$

Hole:

Vertical asymptote:

Horizontal asymptote:

End behavior asymptote:

x – Intercept:

y – Intercept:

Domain:

Range:

$$f(x) = \frac{x^2 - x - 2}{x - 3}$$

Vertical asymptote:

Horizontal asymptote:

End behavior asymptote:

x - Intercept:

y – Intercept:

Domain:

Range:

Worksheet 2.6B