Section 4.2 Trigonometric Functions: The Unit Circle

Find the exact values of the six trigonometric functions of θ .

Find the exact values of the six trigonometric functions of the real number *t*.

Find the point (x, y) on the unit circle that corresponds to the real number t.

$$t = 11\pi/6$$

$$t = -4\pi/3$$

Evaluate (if possible) the sine, cosine, and tangent at the real number.

$$t = 5\pi/3 \qquad \qquad t = -\pi$$

Evaluate (if possible) the six trigonometric functions at the real number.

$$t = 7\pi/4$$
 $t = -3\pi/2$

Evaluate the trigonometric function using its period as an aid. $cos(3\pi)$ $sin(9\pi/4)$ $sin(-8\pi/3)$

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

$$cos(-t) = cost$$
 $sec(-t) = sect$

$$sec(-t) = sect$$

What does this mean?

check values of cosine where $t = \pi/4$ and $t = -\pi/4$

 $\cos t = -3/4$ Use the given value to evaluate each function:

Even and Odd Trigonometric Functions

The sine, cosecant, tangent, and cotangent functions are odd.

$$\sin(-t) = -\sin t$$
 $\csc(-t) = -\csc t$

$$\csc(-t) = -\csc t$$

$$tan(-t) = -tant$$
 $cot(-t) = -cott$

$$\cot(-t) = -\cot t$$

What does this mean?

check values of sine where $t = \pi/4$ and $t = -\pi/4$

Use the given value to evaluate each function: $\sin(-t) = 3/8$

a) sint

b) csct

The displacement from equilibrium of an oscillating weight suspended by a spring is given by $y(t) = \frac{1}{4}\cos 6t$, where y is the displacement (in feet) and t is the time (in seconds). Find the displacements when a) t = 0, b) $t = \frac{1}{4}$, and c) $t = \frac{1}{2}$.

The displacement from equilibrium of an oscillating weight suspended by a spring and subject to the damping effect of friction is given by $y(t) = \frac{1}{4}e^{-t}\cos 6t$, where y is the displacement (in feet) and t is the time (in seconds).

a) Complete the table

t	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
у					

- b) Use the table feature of a graphing utility to approximate the time when the weight reaches equilibrium.
- c) What appears to happen to the displacement as t increases?

Section 4.2 Pgs. 275-276: #5-12, 13-41 odd, 43-50