37)

N 56.31° W

Bearing 208°

Unit 6.1 Law of sines

Derived from using right triangles

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\sin A = \frac{h}{b}$$
 $\sin B = \frac{h}{a}$
 $b \sin A = h$ $a \sin B = h$
 $b \sin A = a \sin B$

 \Rightarrow

Law of sines works when you have AAS, ASA, and SSA patterns

In the law of sines if you are given a choice, try to solve for the smallest angle you can first

How do you know how to label the sides?

smallest side matches up with the smallest angle

Solve \triangle ABC, given that a = 8, $\angle B = 48^{\circ}$, $\angle A = 36^{\circ}$

Solve the triangle.

Given \triangle ABC, a = 7, b = 11 and angle A = 35°

Given \triangle ABC, a = ?, b = 11 and angle $A = 35^{\circ}$

$$SIn35° = \frac{h}{11}$$

$$IISIn35° = h$$

Possible values for side "a" so that a triangle is not possible?

Pull

SSA Pattern could have 0, 1, or 2 solutions

Solve the triangle given:

$$B = 25^{\circ}, b = 15, C = 107^{\circ}$$

Find the area of a triangle

Area of an Oblique Triangle

The area of any triangle is one-half the product of the lengths of two sides times the sine of their included angle. That is, $A = \frac{1}{2} \left(\frac{14}{1000} \right)$

Area =
$$\frac{1}{2}bc \sin A = \frac{1}{2}ab \sin C = \frac{1}{2}ac \sin B$$
.

Find the area of the given triangle.

$$a = 10, b = 14, C = 46^{\circ}$$

$$A = \frac{1}{2} \left(14 \right) \left(7.2 \right)$$

$$A = \frac{1}{2}bh$$
 $A = \frac{1}{2}(14)(7.2)$
 $S1946 = \frac{h}{10}$ $A = 50.4$ unit

$$A = 50.4 \text{ unit}^3$$

Find the area of a triangular lot having two sides of lengths 90 meters and 52 meters and an included angle of 102°.

Forest Ranger Johnson at ranger station A sights a fire in the direction 32° east of north. Ranger Thorpe at ranger station B, 10 miles due east of A sights the same fire on a line 48° west of north. Find the distance from each ranger station to the fire.

The course for a boat race starts at point A and proceeds in the direction S 52° W to point B, then in the direction S 40° E to point C, and finally back to A. Point C lies 8 kilometers directly south of point A. Approximate the total distance of the race course. 9.4 Km

Section 6.1 Pgs 406 - 408 #5, 9. 13, 17, 19, 27, 29, 32, 37, 39, 43, 45, 47, 48, 50, 53