Section 6.3A Vectors in the Plane

Vector: magnitude and direction

Show that \mathbf{u} and \mathbf{v} are equivalent

Component Form of a Vector

The component form of the vector with the initial point $P(p_1, p_2)$ and terminal point $Q(q_1, q_2)$ is given by

$$\overrightarrow{PQ} = \langle q_1 - p_1, q_2 - p_2 \rangle = \langle v_1, v_2 \rangle = \mathbf{v}.$$

The **magnitude** (or length) of v is given by

$$| v | = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \sqrt{v_1^2 + v_2^2}$$

If $|\mathbf{v}| = 1$, then \mathbf{v} is a **unit vector**. Moreover, $|\mathbf{v}| = 0$ if and only if \mathbf{v} is the zero vector $\mathbf{0}$

zero vector is when the initial point and terminal point lie at the origin.

Find the component form and magnitude of the vector \mathbf{v} that has initial point (4, -7) and terminal point (-1, 5)

Vector Operations

*scalar multiplication

*vector addition

Let $\mathbf{v} = \langle -2, 5 \rangle$ and $\mathbf{w} = \langle 3, 4 \rangle$ Find each vector algebraically.

- a) 2**v**
- b) w v
- c) $\mathbf{v} + 2\mathbf{w}$

Use the given figure to sketch a graph of the specified vector.

Finding the magnitude of a Scalar Multiple

Let $\mathbf{u} = \langle 1, 3 \rangle$ and $\mathbf{v} = \langle -2, 5 \rangle$

- a) |**2u**|| b) |**5u**|| c) |**3v**||

Finding a unit vector

$$\mathbf{u} = \text{unit vector} = \frac{\mathbf{v}}{||\mathbf{v}||}$$
 Unit vector has a magnitude of 1

Find a unit vector **u** in the direction of $\mathbf{v} = \langle -2, 5 \rangle$.

Find a unit vector \mathbf{u} in the direction of $\mathbf{v} = \langle 6, -1 \rangle$.

Find the vector \mathbf{v} with the given magnitude and the same direction as \mathbf{u} .

$$||\mathbf{v}|| = 3$$
 $\mathbf{u} = \langle -12, -5 \rangle$ (magnitude of \mathbf{v})(unit vector of \mathbf{u})

Section 6.3A Pgs. 425-428

#9-13 odd, 14-18, 19-23 odd, 25-30, 31-50 odd