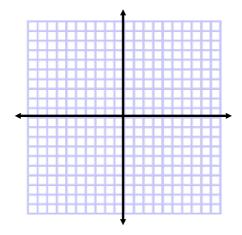
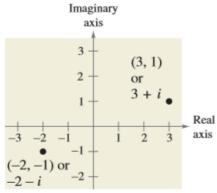
6.5 The complex plane


A complex number z = a + bi can be represented by a point (a, b) in a complex coordinate plane.

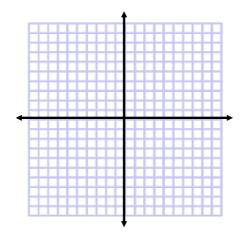
$$z = a + bi$$


$$|z| = \sqrt{a^2 + b^2}$$

Absolute value of a complex number is just the magnitude.

Plot z = -2 + 5i in the complex plane and find its absolute value.

6.5 The complex plane

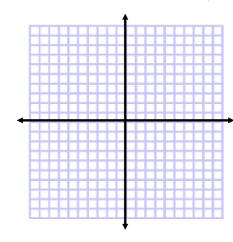

A complex number z = a + bi can be represented by a point (a, b) in a complex coordinate plane.

$$z = a + bi$$

$$|z| = \sqrt{a^2 + b^2}$$

Absolute value of a complex number is just the magnitude.

Plot z in the complex plane and find its absolute value.



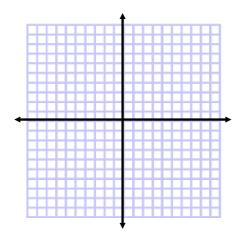
$$z = -2 + 5i$$

$$z = 3 - 4i$$

Complex numbers can be added algebraically as well as graphically.

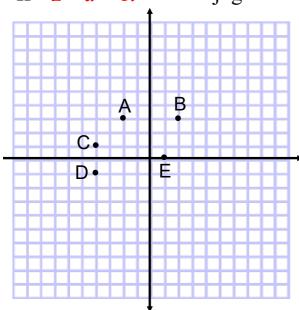
$$\mathbf{z} = a + \mathbf{b}i \longrightarrow \mathbf{u} = \langle a, \mathbf{b} \rangle$$

Find the sum of (1 + 3i) + (2 + i) algebraically and graphically.


graphically: vectors

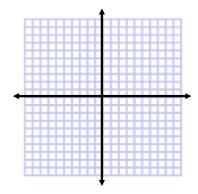
algebraically

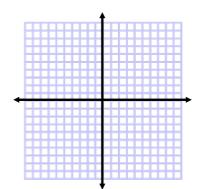
$$\mathbf{u} = \langle 1, 3 \rangle$$


$$\mathbf{v} = \langle 2, 1 \rangle$$

Find the sum of (4 + 2i) - (3 - i) algebraically and graphically.

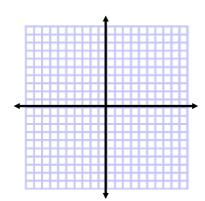
Complex conjugate


If z = a + bi its conjugate is z = a - bi

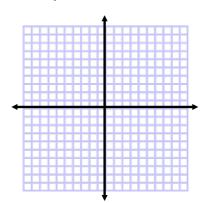

Which two points on the complex plane above are conjugates of each other?

Find the distance between the complex numbers in the complex plane.

$$-5 + i$$
, $-2 + 5i$



$$-7 - 3i$$
, $3 + 5i$



Find the midpoint of the line segment joining the points corresponding to the complex numbers in the complex plane.

$$4 - 3i$$
, $2 + 2i$

$$2 + i$$
, $5 - 5i$

Section 6.5 Pgs. 443-444

#7-14, 15-35 odd (both graphically and algebraically),

37 - 43 odd, 45-47, 49, 56