\qquad
\qquad Date \qquad

Describe how the graph of $y=x^{2}$ can be transformed to the graph of the given equation.

1. $y=(x+50)^{2}-279$	2. $y=(100-x)^{2}$
3. $y=-x^{2}+5.2$	4. $y=-(3-x)^{2}$

Describe how to transform the graph of \boldsymbol{f} into the graph of \boldsymbol{g}.

5. $f(x)=\sqrt{x+2}$ and $g(x)=\sqrt{x-4}$
6. $\quad f(x)=-|x-3|$ and $g(x)=|x-3|$
7. $f(x)=(x-2)^{3}$ and $g(x)=-(x+2)^{3}$
8. $f(x)=\frac{1}{x}$ and $g(x)=\frac{1}{x}+5$

Find the equation of the reflection of \boldsymbol{f} across (a) the \boldsymbol{x}-axis and (b) the \boldsymbol{y}-axis.
9. $f(x)=x^{3}-5 x^{2}-3 x+2 \quad$ 10. $f(x)=2 \sqrt{x+3}-4$
11. $f(x)=\sqrt[3]{7 x}$
12. $f(x)=3|x+5|$

Sketch the graphs of the function when $c=-2,-1,1$, and 2 on the same set of coordinate axes.
13. $f(x)=|x-c|$

Use the graph of f to sketch each graph.

Write an equation for the function whose graph is described.
19. The shape of $f(x)=x^{2}$, but shifted two units to the left, nine units up, and then reflected in the x-axis
21. The shape of $f(x)=|x|$, but shifted four units to the left and eight units down
20. The shape of $f(x)=x^{3}$, but shifted six units to the left, six units down, and then reflected in the y-axis
22. The shape of $f(x)=\sqrt{x}$, but shifted nine units down and then reflected in both the x-axis and y-axis

Write the equation for the function represented by each graph.
23.

25.

27.

24.

26.

28.

29. Given: $f(x)=\sqrt[3]{x}$

Write the transformation in 2 different ways to create the new function $g(x)$ when $f(x)$ is:
a) shifted right 1
b) reflected in the y-axis and shifted up 5
c) shifted down 9
d) reflected in the x-axis and left 7
30. Graph: $h(x)=-f(x-1)+3$

