Honors	Math	ΙΙ
Unit 10	day 3	

Name	Kev		
Period	/	Date	

Choosing Numbers: You have an equally likely chance of choosing any integer from 1 to 50. Find the probability of the given event.

1. An even number is chosen $\frac{1}{2}$

3. A perfect square number
$$\frac{1}{50}$$

5. A factor of 150 is chosen

(1) 150 (5) 30 (10) =
$$\frac{10}{50}$$
 = $\frac{1}{50}$

2. A number less than 35 is chosen

4. A prime number is chosen 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

6. A multiple of 4 is chosen

4,8,12,16,20,24,28,32,36,40,44,48
$$\frac{12}{50} = \frac{6}{25}$$

8. A perfect cube is chosen

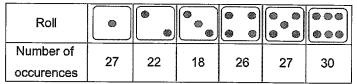
Choosing Cards: A card is randomly drawn from a standard deck of 52 cards. Find the probability of drawing the given card.

9. The king of diamonds $\frac{1}{52}$

10. A king
$$\frac{4}{52} = \frac{1}{13}$$

11. A spade $\frac{13}{52} = \frac{1}{4}$

12. A black card
$$\frac{1}{2}$$


13. A card other than a 2 $\frac{48}{52} = \frac{12}{13}$

14. A face card (a king, queen, jack)

$$\frac{12}{52} = \frac{3}{13}$$

Rolling a die: The results of rolling a six-sided die 150 times are shown. Use the table to find the experimental probability of the given event. Compare your answer to the theoretical probability of the event.

15. Rolling a 5 27

16. Rolling an even number 22 + 26 + 30 $\frac{78}{15}$

18. Rolling any number but a 3

27+22+26+27+30

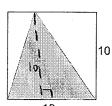
132

150

19. You flip a coin 80 times. You get heads 37 times and tails 43 times. What is the experimental probability of getting heads?

A) 0.4625

B) 0.5

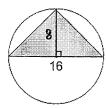

C) 0.5375

D) 0.8605

$$\frac{37}{80} = .4625$$

Find the probability that a dart thrown at the given target will hit the shaded region. Assume the dart is equally likely to hit any point inside the target.

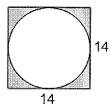
20.



$$A_{\Delta} = \frac{1}{2} (10 \times 10) = 50^{-10}$$

An = 100

$$\frac{50}{100} = \frac{1}{2} = .5$$
 $A_{\Delta} = \frac{1}{2}(16)(8) = 64$


21.

$$A_0 = \pi (8)^2 = 64\pi$$

$$\frac{64}{64\pi} = \frac{1}{11} = .3183$$

22.

An = 196

The standard archery target used in competition has a diameter 23. of 80 centimeters. Find the probability that an arrow shot at the target will hit the center circle, which has a diameter of 16 centimeters. Assume the arrow is equally likely to hit any point inside the target.

A center =
$$\pi (8)^2 = 64\pi$$

A target =
$$T(40)^2 = 1600T$$

- 24. A coin is tossed 100 times. It falls heads 47 times. What is the experimental probability that it falls:
- A) heads

 - .47
- B) tails?

.53

25. A die is rolled 300 times and the results are:

Result	1	2	3	4	5	6
Frequency	52	47	50	51	49	51

What is the experimental probability of rolling:

A)
$$a 6$$
 $\frac{51}{300} = .17$

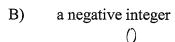
 $\frac{47}{300} = .157$

$$\frac{98}{300} = .3267$$

26. A pair of coins is tossed 500 times and the results are:

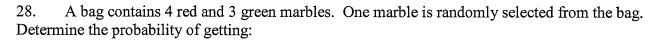
Result	two heads	a head and a tail	two tails
Frequency	121	251	128

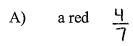
What is the experimental probability of tossing:


$$\frac{121}{500} = .242$$

a head and a tail

$$\frac{128}{500}$$
 = .256


27.	A fair dia is rolled	Determine the	probability of getting:
41.	A fall ule is folicu.	Determine me	probability or getting.


A)	a 3 or 5		
	6+6	= 2	= 1/3

C) a 9

E) a non-five $\frac{5}{6}$

B) a green $\frac{3}{7}$

C) a red or a green

D) a red and a green

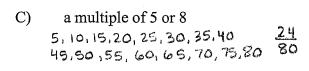
0

29. A 52 card deck is well shuffled, and then one card is dealt from the top of the deck. Determine the probability that it is:

A) a Jack
$$\frac{4}{52} = \frac{1}{13}$$

B) a non-Jack $\frac{48}{52}$

C) a black card $\frac{1}{2}$


E) a diamond or an ace $\frac{16}{5}$

F) a diamond $\frac{1}{4}$

30. A lottery consists of 80 tickets number 1 to 80. One ticket is chosen at random. Determine the probability that the ticket is:

A) a single digit number
$$\frac{9}{80}$$

B) a multiple of 8 8,16,24,32,40,48,56,64,72,80 10/80 = 18

D) a factor of 36

1.36 6.6

2.18

3.12

31. Determine the probability that a person randomly selected in the street has his or her birthday in

$$f(x) = (x - 1)^2 + 2$$
,

$$n(x) = 2x - 4,$$

$$h(x) = 2x - 4$$
, $g(x) = \sqrt{x} - 1$, $j(x) = 3x + 5$

$$(x) = 3x + 5$$

 $f(x) = (x - 1)^{2} + 2$, $stretcher(x)^{2}$ left 4 down3 1. 2f(x + 4) - 3

$$(x + 4) - 3$$

$$2 f(x+4)-3=2(x+3)^2-1$$

 $f^{-1}(x)$, given that f(x) is restricted to $x \ge 1$

$$X = (y-1)^2 + 2$$

$$x-2=(y-1)^2$$

3.
$$(g \circ f)x$$

$$g(f(x)) = \sqrt{(x-1)^2 + 2} - 1$$

g(x-2)-4

VX-2 -1 -4

 $\sqrt{x-2} - 5$

4.
$$3h(x-2)+6$$

$$h^{-1}(x)$$

$$7. \qquad h(x) + j(x)$$

$$(2x-4)+(3x+5)$$

$$5x+1$$

8. $(h \cdot j)x$

9.

$$3f(2) + g(9)$$

$$3(3)+2$$

10.
$$j(m^2)$$