Honors Math II
Unit 10 day 4 notes

Name \qquad
Period \qquad

Probabilities of compound events

$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$ events over lap
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
disjoint or mutually exclusive events no over lap

Use Venn diagrams to calculate the probabilities

Example of disjoint event:

A card is randomly selected from a standard deck of 52 cards. What is the probability that it is a 10 or face card?

Example of overlapping event:
A card is randomly selected from a standard deck of 52 cards. What is the probability that it is a face card or a spade?

Independent events: if the occurrence of one has no effect on the occurrence of the other.

Probability of independent events:

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

For a fundraiser, a class sells 150 raffle tickets for a mall gift certificate and 200 raffle tickets for a booklet of movie passes. You buy 5 raffle tickets for each prize. What is the probability that you win both prizes.

Find the probability of spinning the given colors:
a) green, then blue
b) blue, then red
c) blue, then green, then red

Dependent events: if the occurrence of one has an effect on the occurrence of the other.

Probability of dependent events:

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B} \mid \mathrm{A})
$$

A bag contains 4 blue marbles, 3 red marbles and 2 white marbles. What is the probability of selecting a blue marble and then a white marble?

> Independent / Dependent Events
> Replacement / without Replacement

Find the probability of drawing the given cards from a standard deck of 52 cards (a) with replacement (b) without replacement

1. A spade, then a club
a)
b)
2. A jack, then another jack
a)
b)

Probability Tree Diagram

Using observations made of drivers arriving at a certain high school, a study reports that 69% of adults wear seat belts while driving. A high school student also in the car wears a seat belt 66% of the time when the adult wears a seat belt, and 26% of the time when the adult does not wear a seat belt. What is the probability that a high school student in the study wears a seat belt.

You are off to soccer, and love being the Goalkeeper, but that depends who is the Coach today:
*with Coach Sam the probability of being Goalkeeper is 0.5
*with Coach Alex the probability of being Goalkeeper is 0.3
Sam is Coach more often...about 6 out of every 10 games.
What is the probability you will be a Goalkeeper today?

