\qquad

Bell work

Solve by factoring.

1. $6 x^{2}+7 x-3=0$
2. $25-4 x^{2}=0$
3. $4 x^{2}-35 x-9=0$
4. $x^{2}+5 x-6=0$

Polynomial function:

$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
leading coefficient: a_{n}
degree: n
constant term: a_{0}

Degree	Type	Example
0	constant	
1	linear	
2	quadratic	
3	cubic	
4	quartic	
5	quintic	

1. Create a degree 3 binomial with a leading coefficient of 7 in standard form.
2. Create a degree 5 trinomial with a leading coefficient of -1 in standard form.

Direct Substitution:
3. $f(x)=x^{4}+2 x^{3}+3 x^{2}-7$
when $x=-2$
4. $g(x)=x^{3}-5 x^{2}+6 x+1$
when $\mathrm{x}=4$

Synthetic Substitution / Division
5. $f(x)=x^{4}+2 x^{3}+3 x^{2}-7$
when $x=-2$
6. $g(x)=x^{3}-5 x^{2}+6 x+1$
when $x=4$
7. $f(x)=5 x^{3}+3 x^{2}-x+7$
when $x=-2$
8. $g(x)=2 x^{4}-5 x^{3}-4 x+8$
when $\mathrm{x}=3$

End Behavior

Degree odd \& leading coefficient positive:

Degree odd \& leading coefficient negative:

Degree is even and leading coefficient is positive:

Degree is even and leading coefficient is negative:

Graph the polynomial and state the interval where it is increasing and decreasing. Describe the end behavior.
9. $f(x)=5 x^{3}-2 x^{2}-8 x+16$
10. $f(x)=-x^{3}+x^{2}+3 x-3$
11. $f(x)=x^{4}-x^{3}-4 x^{2}+4$

Describe the degree and leading coefficient of the polynomial function whose graph is shown.

